Generic placeholder image

About me

View details »

Generic placeholder image

Publications

View details »

Generic placeholder image

Research interests

View details »


About me

I have a strong interest in the seasonal cycle of (sub)mesoscale turbulence in the surface ocean and how it interacts with the large-scale ocean circulation and biogeochemistry. I approach the problems by analyzing big data outputs from general circulation models, idealized numerical simulations and remote-sensed observations.

Education

Ph.D. - Physical Oceanography
Columbia University in the City of New York, USA
2014-2019

Summer School - Turbulence Theory in Climate Dynamics
École de Physique des Houches, France
August 2017

B.E. - Ocean Engineering
The University of Tokyo, Japan
2010-2014

Generic placeholder image

Submitted

Uchida, T., D. Balwada, R. Abernathey, G. McKinley, S. Smith and M. Lévy. Eddy iron fluxes control primary production in the open Southern Ocean. Nature Communications, submitted.

In preparation

Balwada, D., W. Chen, J. C. Ohlmann, T. Uchida, R. Abernathey. Velocity Structure Functions in California’s Coastal Seas from Surface Drifters.

Publications

Uchida, T., D. Balwada, R. Abernathey, G. McKinley, S. Smith and M. Lévy. The contribution of submesoscale over mesoscale eddy iron transport in the open Southern Ocean. JAMES, 2019.

Uchida, T., D. Balwada, R. Abernathey, P. Channing, E. Boss and S. Gille. Southern Ocean Phytoplankton Blooms Observed by Biogeochemical Floats. JGR: Oceans, 2019.

Uchida, T., R. Abernathey and S. Smith. Seasonality of eddy kinetic energy in an eddy permitting global climate model. Ocean Modelling, 2017.

Non-refereed publications

Uchida, T. Seasonality in surface (sub)mesoscale turbulence and its impact on iron transport and primary production. Ph.D. Thesis, 2019.

Oral & poster presentations

Uchida, T., R. Abernathey, G. McKinley, S. Smith, D. Balwada and M. Lévy. Seasonality in eddy iron fluxes and its impact on primary production. AGU Fall Meeting. December 2018. Washington D.C., USA.

Uchida, T., R. Abernathey, G. McKinley, S. Smith, D. Balwada and M. Lévy. Seasonality of eddy iron fluxes in the Southern Ocean and its impact on primary production. NHOM-Brest: Workshop on Non-Hydrostatic Ocean Modeling. October 2018. Brest, France.

Uchida, T., R. Abernathey, S. Smith and D. Balwada. Idealized Study of Seasonal Dynamics in the Southern Ocean. Gordon Research Conference. June 2018. Andover, USA.

Khatri H., T. Uchida and D. Balwada. Ocean Surface Spectral Fluxes of Kinetic Energy, Enstrophy and Buoyancy Variance from a Earth System Model. Gordon Research Conference. June 2018. Andover, USA.

Uchida, T., R. Abernathey and S. Smith. The global seasonal cycle of mixed layer instability in a GCM. 21st Conference on Atmospheric and Oceanic Fluid Dynamics 19th Conference on Middle Atmosphere. June 2017. Portland, USA.

Generic placeholder image

Big-data Oceanography

Consistent OceaN Turbulence for ClimaTe Simulators
CONTaCTS is a project aiming to study and parameterize (sub)mesoscale momentum fluxes where it is critical: within the surface and bottom boundary layers of the ocean, where it interacts with the atmosphere and topography. We propose to develop such parameterizations for O(10km) resolution models, based on the analysis of existing O(1km) resolution North Atlantic simulations (eNATL60).

Bioproductivity in the open Southern Ocean
I am interested in the impact of eddy fluxes on the transport of momentum and tracers such as carbon and nutrients, and how this affect the bioproductivity in the Southern Ocean. The Southern Ocean is know as one of the high-nutrient low-chlorophyll zones, with the limiting nutrient being iron. This makes the biological pump of carbon in the region very sensitive to influx of iron, yet our insights into the pathways of iron are limited. My interest has been to quantify the relative impact of supply by the ocean dynamics. Below is a list of packages I have developed and/or contributed to for my analysis.

xrft
xrft is a Python package for taking the discrete Fourier transform (DFT) on xarray and dask arrays. It keeps the metadata of the original dataset and provides a clean work flow of DFT.

xomega
xomega is a Python package for inverting the generalized Omega equation given the right-hand side of the equation. It solves the inversion in Fourier space and provides an efficient work flow.

oceanmodes
oceanmodes is a Python package for linear quasigeostrophic normal mode analysis given the background state of velocity and density profile.

Generic placeholder image